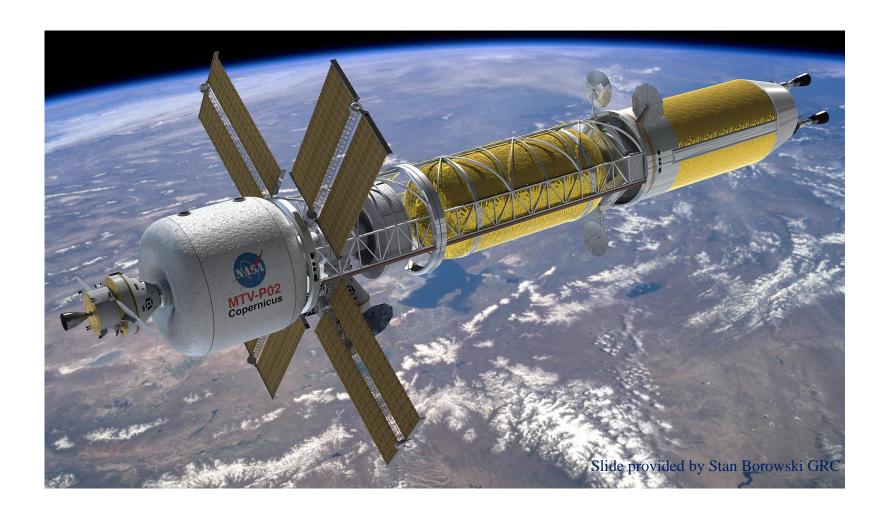
# Idaho National

Laboratory


## Development of Bi-Modal Fuels for Nuclear Thermal Propulsion and Power

James Werner
Space Nuclear Systems and Technology
Division
Idaho National Laboratory

Nov 19, 2014



Mankind is drawn to the heavens for the same reason we were once drawn into unknown lands and across open seas. We choose to explore space because doing so improves our lives, and lifts our national spirit. So let us continue the journey. - G.W. Bush





#### **Outline**

- Thermal Nuclear Propulsion
- Nuclear Power
- The challenges to designing a bi-modal reactor?
- HTGR fuel development
- What are options and steps forward
- Conclusions

## Why Nuclear?



#### • Provides enormous fuel energy density



Fission = 
$$50 x$$

Radioisotope =

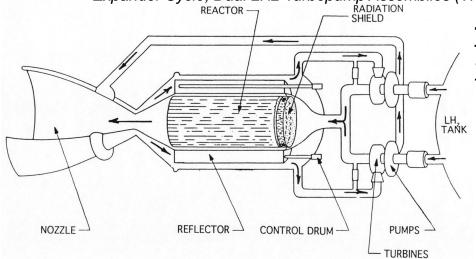


#### • Overcomes limitations of other candidate power sources

- Not dependent on location w/respect to sun or planet
- Operates in shadows or at night
- It is a technology that <u>is ready today</u>

#### • Improves safety and capability of future human or science missions

- Power-rich environment
- Potential for rapid transportation






#### **Solid Core Nuclear Thermal Rocket Engine Schematic**

Expander Cycle, Dual LH2 Turbopump Assemblies (TPA)

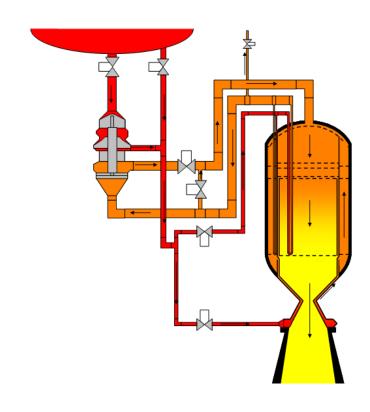
REACTOR — RADIATION



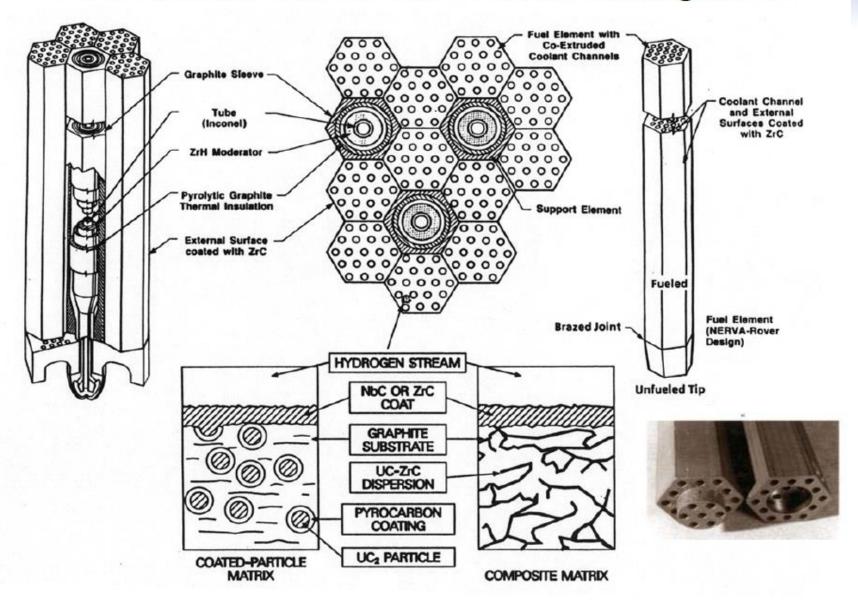
| Typical Attributes:        | LOX/LH <sub>2</sub>   | NTP         |
|----------------------------|-----------------------|-------------|
| Specific Impulse           | 420–460 s             | 800–900 s   |
| Thrust/Weight              | <i>50</i> – <i>70</i> | 3–6         |
| <b>Exhaust Temperature</b> | >3000 K               | 2300-2900 K |

#### **Benefits:**

- Reduced launch mass or trip time due to twice the specific impulse of chemical propulsion
- Increased mission launch opportunities
- Experience from previous programs
- Leverages chemical rocket experience
- Scaleable no combustion instability


#### **Challenges:**

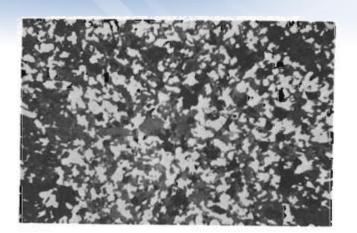
- Nuclear fuel recapture/development
- Cost of required ground test facilities
- Human-rating qualification
- High launch volume LH<sub>2</sub> propellant
- Cryogenic fluid management (CFM)




## NTR System Properties

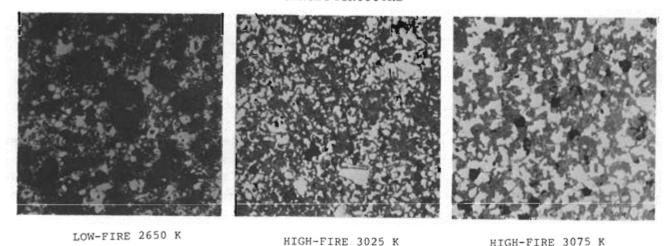
- Propellant / Coolant Hydrogen
- Peak Fuel Temperature 2860 K
- Chamber Temperature 2790 K
- Chamber Pressure 1000 psia
- Reactor Power 550 MWth
- Design Thrust 25 klbf
- Specific Impulse 900 s
- Thrust-to-weight 3.42




## "Heritage" Rover / NERVA Composite Fuel Element and Tie Tube Bundle Arrangement



## Heritage Composite Microstructure




- Target microstructure from literature
- Consist of solid solution network of ZrC



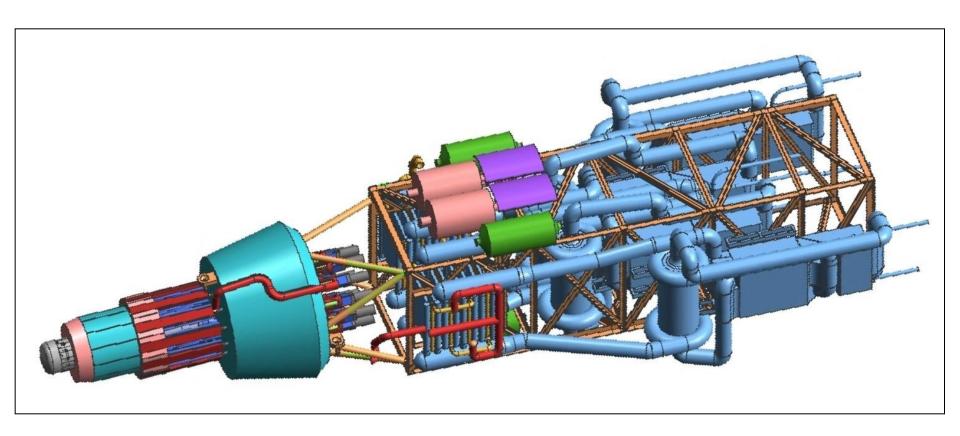
100 µ

TARGET STRUCTURE



ELEMENTS FROM LOT 62 (KX-88, 35 vol%, 382 kg U/cm3) (STATION 28)

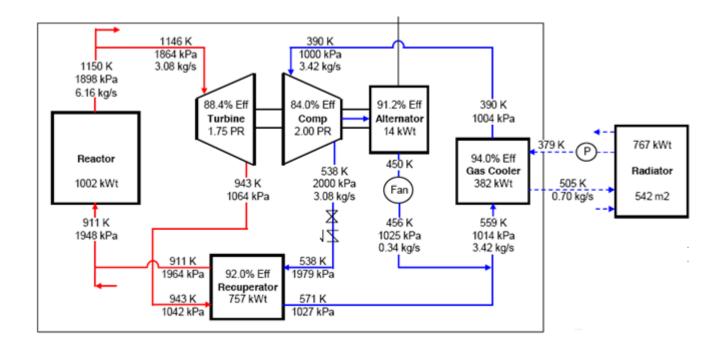
Fig. B2. Microstructure of composite elements as a function of heat-treatment temperature. The gray areas are graphite, the white areas are carbide, and the black areas are void.




#### NTR Fuel

- Challenges
  - High temperatures near melting point of fuel and materials
  - Plastic deformation
  - Uranium migration
  - High pressures
  - Hydrogen erosion causing loss of cladding and fuel
- Advantages
  - Very little fuel consumed
  - Very little fission products generated
  - Operates for 120 minutes

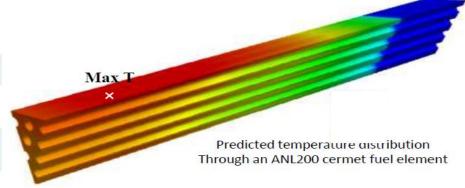



#### **Nuclear Power**





## NP System Properties

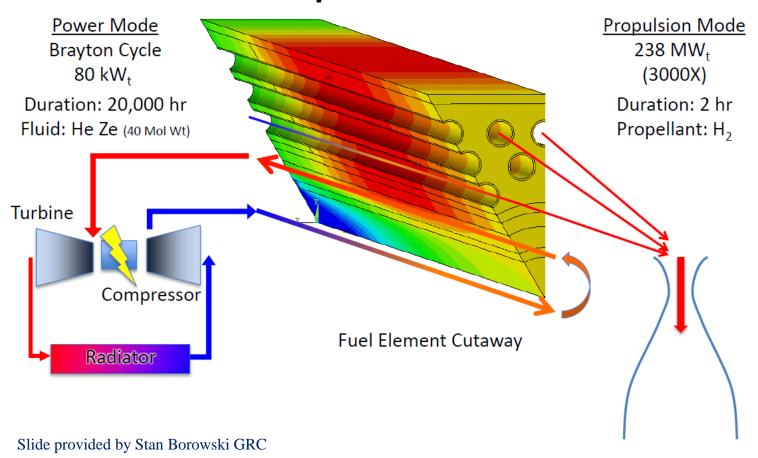

- Coolant He, LM, HP
- Peak Fuel Temperature 1200 K
- Pressure 1000 to atm psia
- Reactor Power 1000 -120 kWth





## Melting Points of Reactor Fuels/Materials

| Material/<br>Element            | Melting Temperature<br>(K) (No H <sub>2</sub> ) |  |
|---------------------------------|-------------------------------------------------|--|
| UC                              | 2805                                            |  |
| UC <sub>2</sub><br>NERVA Peewee | 2835                                            |  |
| UC-40 ZrC NERVA Composite       | 3050                                            |  |
| $(U_{0.1}Zr_{0.9})C_{0.96}$     | 3550                                            |  |
| $(U_{0.1}Zr_{0.9})C_{0.98}$     | 3100                                            |  |
| W-60 v/o UO <sub>2</sub>        | 3075                                            |  |
| Uranium<br>Nitrides             | Chemically Unstable                             |  |
| Tungsten                        | 3687                                            |  |
| Graphite                        | 3915 (sublimes)                                 |  |
| ZrC                             | 3805                                            |  |




| T _                     | _AT _/ | \T ≃     | T          |
|-------------------------|--------|----------|------------|
| T <sub>fuel_max</sub> - | safety | matrix _ | propellant |

| Design        | ΔT <sub>matrix</sub> (K) |
|---------------|--------------------------|
| NERVA SNRE    | 220 (130)                |
| Cermet ANL200 | 520 (500)                |
| Cermet GE710  | 140                      |



## **Bimodal Operations For NTP**





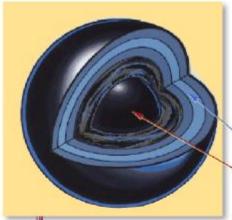
## **NP Options**

- Use of heat pipes in reflector
- Coolant channels in reflector or control drums
- Use of tie-tubes in core attached to power generation system



## What are the Challenges

#### **Propulsion**


- Short operation (min)
- Low FP interaction
- Open cycle
- Affect of long term operation on restart and burn times

#### **Power**

- High Temperature (2300 C)
   Moderate temperature (700 C)
  - Long operation (yr)
  - FP interaction with fuel and cladding
  - Closed cycle
  - Ability to survive NTR operation
  - Impact on NTR operation



#### High Temperature Gas Reactor



#### **TRISO Coated Fuel Particles:**

- Lots of cladding extremely strong
- · Little fuel fully encapsulated

Each fuel particle forms a separate pressure containment vessel for the kernel (to 1000 atm)

Ceramic Coatings
Fuel Kernel (U, Pu, Th, TRU)



**PARTICLES** 



COMPACTS



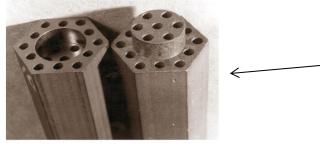
**FUEL BLOCK** 

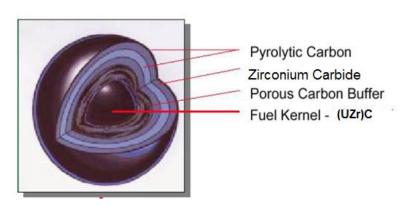


HTGR CORE

Prismatic concept illustrated - Pebble Bed variant also possible




## Options for Developing Bi-Modal Fuel


- Step 1
  - Test composite fuel currently being developed at ORNL
  - Operate at lower temperatures
  - Analyze for long duration operating times
    - Fuel / Cladding interactions
    - FP interactions
    - Uranium migration
  - Analyze stresses due to temperature transients
  - Model / optimize core configurations



## Options for Developing Bi-Modal Fuel

- Step 2
- Investigate HTGR particle fuel using advanced coating and QC techniques
  - (Uzr)C kernal allows for high temperature operation
  - Zirconium Carbide outer layer provides protection from hydrogen
- Buffer layer around the fuel will allow for retention of fission products during power operation phase
- Because of the multi layers operating temperature during propulsion phase may be less, but fits in well with existing designs







## Other Design Options

- Cermet fuel with heat pipes- UO2W cermet fuel
- Liquid fueled annular reactor interior core is liquid for propulsion, coolant loops in the reflector for power UC<sub>2</sub> (molten)
- Particle bed reactor closed loop tie-tubes for power and turbine pump Hydrogen flows through particle bed (outer frit to inner frit) for propulsion. 400-500 micron UO<sub>2</sub> with multi-layer coatings.



#### **Conclusions**

- Continue development of NTR composite fuel
  - Verify fabrication and performance characteristics
  - Conduct additional reactor experiments and modeling to understand performance characteristics for power
- Investigate particle fuel for NTR options
  - Utilize advances in fuel fabrication
  - Perform trade studies to find optimum balance between NTR and NP options
- Development of one fuel for multiple applications is the preferred option